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Abstract— While imitation learning provides a simple and
effective framework for policy learning, acquiring consistent
action during robot execution remains a challenging task. Ex-
isting approaches primarily focus on either modifying the action
representation at data curation stage or altering the model itself,
both of which do not fully address the scalability of consistent
action generation. To overcome this limitation, we introduce
the Diff-Control policy, which utilizes a diffusion-based model
to learn action representation from a state-space modeling
viewpoint. We demonstrate that diffusion-based policies can
acquire statefulness through a Bayesian formulation facilitated
by ControlNet, leading to improved robustness and success
rates. Our experimental results demonstrate the significance
of incorporating action statefulness in policy learning, where
Diff-Control shows improved performance across various tasks.
Specifically, Diff-Control achieves an average success rate of
72% and 84% on stateful and dynamic tasks, respectively.
Notably, Diff-Control also shows consistent performance in the
presence of perturbations, outperforming other state-of-the-art
methods that falter under similar conditions. Project page:
https://diff-control.github.io/

I. INTRODUCTION

In the field of robotics, imitation learning [1] has become
a prominent method for programming robots based on expert
demonstrations in a data-driven and sample-efficient manner.
Within this context, behavioral cloning, in its simplest form,
is structured as a supervised regression task aimed at map-
ping observations to corresponding actions. Previous studies
have explored various approaches to learning behavioral
cloning policies, such as directly outputting actions via re-
gression models [2] or utilizing implicit policies [3]. Notably,
diffusion-based policies [4] have emerged as a standout
choice due to their ability to model multimodal action
distributions effectively, leading to enhanced performance.

In practice however, the concern over inconsistency in
action representation remains a persistent challenge. Such
inconsistencies can lead to noticeable disparities between the
distribution of robot trajectories and the underlying environ-
ment, thereby limiting the efficacy of control policies [5].
The primary causes of this inconsistency typically stem
from the context-rich nature of human demonstrations [6],
distribution shift problems [7], and the volatile nature of
high-dynamic environments. Previous approaches, such as
action chunking [8] and predicting closed-loop action se-
quences [4], have been proposed to address this issue. Ad-
ditionally, Hydra [9] and Waypoint-based manipulation [10]

1Authors are with the School of Computing and Augmented Intel-
ligence, Arizona State University, USA {xliu330, yzhou298,
fweigend, sdsonawa, hbenamor}@asu.edu

2Author is with Department of Human Intelligence Systems, Graduate
School of Life Science and Systems Engineering, Kyushu Institute of
Technology ikemoto@brain.kyutech.ac.jp

Base Policy Diff-Control Policy Diff-Control Policy Diff-Control Policy

: observation (RGB)

conditon
Encoder

time
Encoder

conditon & time

Input: 

Output: 

(b) Model architecture 

: condition (language) : action sequence

Condition Encoder 
Image t 

action t-1 

action t 

Encoder A (k:5x5)

Encoder B (k:3x3)

Encoder C (k:3x3)

Middle 

Decoder A (k:3x3)

Decoder B (k:3x3)

Decoder C (k:5x5)

Encoder A (k:5x5)

Encoder B (k:3x3)

Encoder C (k:3x3)

Middle 

zero convolution 

zero convolution 

zero convolution 

zero convolution 

ControlNet 

Diffusion Model 

Diff-Control Policy 

Denoising Diffusion Step

denoising step denoising step denoising step denoising step

Fig. 1. Diff-Control Policy incorporates ControlNet, functioning as a
transition model that captures temporal transitions within the action space
to ensure action consistency.

modify action representations to ensure consistency. How-
ever, these approaches address the problem by altering the
action representation without using the actions as is.

Instead, can we learn to explicitly impose temporal con-
sistency by incorporating temporal transitions within dif-
fusion policies? In the realm of deep state-space models
(DSSMs) [11]–[13], the effective learning of a state transi-
tion model enables the identification of underlying dynamic
patterns. In this paper, we argue that such deep transition
models can easily be integrated into diffusion policies in
order to capture temporal action dynamics as a state-space
model. This integration makes the policy stateful, thereby
increasing robustness and success rates.

We propose Diff-Control, a stateful diffusion-based pol-
icy that generates actions and enables learning an action
transition model concurrently. Building upon the ControlNet
framework introduced by [14] for spatial conditioning control
in image generation, we leverage it as the transition model
to provide temporal conditioning to a base diffusion policy.
As shown in Figure 1, a prior action sequence (in blue) is
utilized as condition when generating new action sequence
(in red). The main contributions of the paper are:

• A deep, recursive Bayesian filter within diffusion-based
polices using ControlNet structure as a transition model
to ensure consistent action generation.

• Diff-Control stateful policy representation performing
dynamic and temporal sensitive tasks with at least 10%
and 48% improvement in success rate. Diff-Control
policy exhibits notable precision and robustness against

https://diff-control.github.io/
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Fig. 2. The Diff-Control Policy, denoted as πθθθ , is a stateful diffusion policy. It operates by generating a sequence of actions while incorporating conditioning
on previously generated actions. In this example, the Diff-Control policy is depicted executing the “Open Lid” task. For instance, in the second sub-figure,
the blue trajectory represents previous action trajectory, denoted as a[Wt], while the red trajectory displays the newly generated sequence of actions,
denoted as a[Wt+h].

perturbations, achieving at least a 30% higher success
rate compared to state-of-the-art methods.

• Empirical evidence that Diff-Control Policy can perform
on a wide range of tasks including high-precision tasks
with at least 31% success rate improvement.

II. RELATED WORK

Diffusion models have gained considerable attention in
diverse robot control applications, including tasks such as
planning [15], motion prediction [16] and reinforcement
learning [17]. Notably, diffusion-based control policies have
garnered substantial interest as a robust representation of
agent behavior [4], [15]. In the field of imitation learning,
these diffusion-based policies have been applied across var-
ious tasks, leveraging their capacity to articulate multimodal
action distributions. Illustrative applications include goal-
directed navigation for mobile robots [18], integration of
human behavior in collaborative human-robot tasks [19], and
language-guided robot skill learning activities [20]. While
these policies demonstrate remarkable scalability in diverse
control domains, they are fundamentally stateless, lacking
provisions for incorporating memory and prior knowledge
into the controller, potentially leading to inconsistent action
generation.

To overcome this constraint, integrating a stateful pol-
icy [21], [22] becomes imperative, particularly in scenarios
where robots are operating in dynamic environments or
engaging in tasks over extended horizons. Stateful policies
leverage both historical and present states to formulate ac-
tions, facilitating adept management of intricate tasks. The
application of stateful trajectories has shown benefits in
long-horizon skill planning [23], and showcases predictive
prowess in evolving environments [24]. A central challenge
in this regard is the state representation itself - which features
have to be part of the temporal state in order to ensure
accurate completion of the task.

In our study, we adopt a deep state-space model (DSSM)
approach [11] to address these challenges. DSSMs enable
the effective learning of end-to-end models that capture
state transitions from observed sequences alone [12], [13].
Differentiable Filters [13] as a subclass of DSSMs has shown
the effectiveness of modeling uncertainty with noise profiles
in state space modeling. These Differentiable Filters also
show good performance on real-world tasks with consider-
able improvement in state tracking accuracy [25]–[27]. In
our work, we leverage a formulation at the intersection of
recursive Bayesian filtering and deep learning [26], [28] to
construct a state-space model that captures the underlying
transition dynamics in both space and time.

III. METHOD

The key objective of Diff-Control is to learn how to incor-
porate state information into the decision-making process of
diffusion policies. An illustrative example for this behavior is
shown in Figure 3: a policy learning to approximate a cosine
function. Given single observation at time t, stateless policies
encounter difficulties in producing accurate generating the
continuation of trajectories. Due to ambiguities, diffusion
policy [4] tends to learn multiple modes. By contrast, Diff-
Control integrates temporal conditioning allowing it to gen-
erate trajectories by considering past states. To this end, the
proposed approach leverages recent ControlNet architectures
to ensure temporal consistency in robot action generation.

In computer vision, ControlNet is used within stable
diffusion models to enable additional control inputs or extra
conditions when generating images or video sequences. Our
method extends the basic principle of ControlNet from image
generation to action generation, and use it as a state-space
model in which the internal state of the system affects the
output of the policy in conjunction with observations (camera
input) and human language instructions.

Figure 2 offers an overview of Diff-Control in action for
the “Open Lid” task. Within each time window (depicted in
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Fig. 3. Stateful behavior: at a given state, Diff-Control policy can utilize
prior trajectories to approximate the desired function. Diffusion policy [4]
learns both modes but fails on generating the correct trajectory cosistently,
Image-BC/BC-Z [2] fails to generate the correct trajectory.

red), Diff-Control generates action sequences. When generat-
ing subsequent action sequences, it utilizes previous actions
as an additional control input, shown in blue. This temporal
transition is achieved through Bayesian formulation, effec-
tively bridging the gap between standalone policies and state
space modeling.

Subsequently, we will introduce the elements of the Diff-
Control algorithm, the underlying network architecture and
the training process in detail.

A. Diffusion Model

Diffusion models are generative models that iteratively
map Gaussian noise to a target distribution, with the capacity
to optionally condition on contextual information [29]. Given
aT ∼ N (0, I) as the starting point, the diffusion model
predicts an output sequence as aT−1,aT−2, · · · ,a0, where
each subsequent output serves as a denoised version of the
previous output. a0 is the output after the diffusion process.
We use the denoising diffusion model (DDPM) [30] as the
backbone. In training, the noise inputs can be generated given
a varied noise level: aτ =

√
ᾱτa+

√
1− ᾱτz, where ᾱτ is

variance schedule, and z is random noise, z ∼ N (0, I). We
can train a neural network ϵ(·) to predict the noise added to
the input by minimizing:

LDDPM := Eo,a,τ,z

[
∥ϵ(o,a, τ)− z∥22

]
, (1)

where (o,a) represents observation and action pairs, τ is the
denoising timesteps, τ ∈ [1, T ]. In the sampling step, we
interatively run the denoising process:

aτ−1 =
1

√
ατ

(
aτ −

1− ατ√
1− ᾱτ

ϵ(o,aτ , τ)

)
+ στz, (2)

where στ and ατ are noise schedule parameters, which has
been well-studies in [30], [31].

B. Recursive Bayesian Formulation

The objective of our method is to learn a policy with
conditions c and observations o as input. In this context,
we define a as the trajectory comprising the robot’s end-
effector pose. In alignment with prior approaches [4], [32],
our aim is also to take multiple conditions as input. However,
as mention in Section I, efforts have been made to explore
robust action generation in previous works [4], [8], [9],
they have not accounted for the statefulness of a. We
address the action consistency from a Bayesian perspective
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Fig. 4. The Diff-Control Policy is implemented through the utilization of
a locked U-net diffusion policy architecture. It replicates the encoder and
middle blocks and incorporates zero convolution layers.

by introducing transition in action spaces, our formulation is
as follows:

p(at|a1:t−1,o1:t, c)

∝ p(ot|at, c) p(at|a1:t−1,o1:t−1, c).
(3)

Let bel(at) = p(at|a1:t−1,o, c), applying the Markov prop-
erty, i.e., the assumption that the next generated trajectory is
dependent only upon the current trajectory, yields:

bel(at) = η p(ot|at, c)︸ ︷︷ ︸
observation model

t∏
t=1

transition model︷ ︸︸ ︷
p(at|at−1, c) bel(at−1), (4)

where η is a normalization factor, p(ot|at, c) is the ob-
servation model and p(at|at−1, c) is the transition model.
The transition model describes the laws that govern the
evolution of the system dynamics, while the observation
model identifies the relationship between the internal state
of the system and observed, noisy measurements.

C. Diff-Control Policy

We now show how Bayesian formulation and diffu-
sion model can be coupled together such that one pol-
icy can generate stateful action sequences that facilitate
consistent robot behaviors. We propose Diff-Control Policy
πθθθ(a[Wt]|o,a[Wt−h], c) as shown in Figure 2, which is pa-
rameterized by θθθ. Here, h stands for the execution horizon,
c represents a language condition in the form of a natural
human instruction, and o denotes a sequence of images
captured by an RGB camera of the scene. The policy πθθθ
generates a window of trajectory a[Wt] = [a1,a2, · · ·aW ]T ∈
R7×W , where W refers to the window size or the prediction
horizon.

The Diff-Control policy within the Bayesian formulation
comprises two crucial modules. The transition module re-
ceives the previous action a[Wt] and generates latent embed-
dings for the subsequent utilization by the base policy. Acting



as the observation model, the base policy incorporates the
temporal information associated with a[Wt] and produces a
new action a[Wt+h]. This two-module structure enables the
Diff-Control policy to adeptly capture temporal dynamics
and facilitate the generation of subsequent actions with
accuracy and consistency.

Base Policy: To begin, we train a diffusion-based pol-
icy [4] following the step in Section III-A as the base policy
π̄ψψψ(a[Wt]|o, c). We adopt the 1D temporal convolutional
networks from [15] and construct the U-net backbone. The
policy π̄ψψψ can autonomously execute and generate actions
without any temporal information dependency.

Transition Model: The proposed framework incorporates
ControlNet as the Transition Module (depicted in Figure 4).
This utilization extends the capability of the policy network
to include temporal conditioning effectively. To achieve this,
we utilize the previously generated action sequences as the
prompt input to ControlNet. By doing so, the base policy
π̄ψψψ becomes informed about the previous actions a[Wt−h].
We implement ControlNet by creating a trainable replica of
the π̄ψψψ encoders and then freeze the base policy π̄ψψψ . The
trainable replica is connected to the fixed model with zero
convolutional layers [33]. ControlNet can then take a[Wt−h]

as the conditioning vector and reuses the trained base policy
π̄ψψψ to construct the next action sequence a[Wt].

D. Training

The training process for the base policy π̄ψψψ(a[Wt]|o, c)
follows a straightforward approach. We firstly encode the
observation o and language condition c into the same em-
bedding dimension, and then we utilize the learning objective
defined in Equation (1) to train the base policy. The same
learning objective is used in finetuning the ControlNet:

L := Eo,c,a,a[Wt]
,τ,z

[
∥ϵθ(o, c,aT ,a[Wt], τ)− z∥22

]
, (5)

where L is the overall learning objective of the entire
diffusion model, ϵθθθ(·) is the corresponding neural network
parameterized by θθθ. The base policy and the Diff-Control
policy are trained end-to-end.

E. Design Decisions

For all our experiments, we adopt a CNN-based U-net
architecture. This choice of a CNN-based backbone has
proven to be suitable for a diverse range of tasks, both in
simulated and real-world scenarios. In our model architec-
ture, as depicted in Figure 4, the encoder and decoder blocks
utilize 1D convolutional layers with varying kernel sizes. To
implement the zero convolutional layers for ControlNet, we
employ 1D 1×1 convolutional layers with weights initialized
to zero. This approach ensures that any potential detrimental
noise does not affect the hidden states of the trainable neural
network layers during the initial stages of training [14].

We use a window size W = 24 as the default predicting
horizon for all the experiments, and the execution horizon
h between a[Wt−h] and a[Wt] are 12 steps. We only execute
12 steps (h = 12) by default during the experiments in align
with [4]. Because according to [4], the execution horizon

A

B

High-Precision Lid Handle PickLanguage conditioned 

Dynamic Scooping Drum Beats

Fig. 5. Real-world tasks in this study: a) language-conditioned pick and
place task in kitchen scenario, b) “Open Lid” task with high precision
requirement, c) “Duck Scooping” task in a water tank, d) “Drum Beats”
task by hitting the drum 3 times.

TABLE I
TASK PROPERTIES

Task Dis. HiPrec Dem. Act. Steps

Kitchen Lang. > 5 × 100 2 ∼80
Kitchen Lid > 5 ✓ 50 1 ∼110
Duck Scoop 0 ✓ 50 1 ∼70
Drum Beats×3 0 × 150 1 ∼70

being too large or too small can cause the drop of the
performance.

During the implementation of language-conditioned tasks,
we observe that diffusion-based policy reaches a certain
capacity when learning varied actions utilizing complex
CLIP language features [34] as conditions. To address this,
a more practical approach is to incorporate a fuse layer
and increasing embedding size for visual and language
representations, instead of concatenating them directly. This
modification can enhance the policy’s overall performance
for language-conditioned tasks.

IV. REAL-ROBOT TASKS

We conducted a comprehensive evaluation of the Con-
trolNet Policy by comparing it with four baseline methods
across five distinct robot tasks. Table I provides a summary of
the task properties. The tasks encompassed in our evaluation
include: (a) Language Conditioned kitchen tasks, (b) Open
Lid task in the kitchen scene as a high-precision task, (c)
Duck Scooping task in a dynamic scenario, (d) Drum Beats
as a periodic task.

The action of the UR5 robot arm is represented as a[Wt],
where each action is denoted as ai = [x, y, z, r, p, y, g]T ,
where i ∈ [1,W ]. It encompasses the position of the end-
effector in Cartesian coordinates (x, y, z), the orientations
(r, p, y), and the gripper’s joint angle g. For all the tasks, the
input modalities consist of two modalities: o and c. The first
modality, o ∈ R224×224×3, corresponds to a RGB image.
The second modality, c, refers to a language embedding
derived from natural language sequences. This embedding
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Fig. 6. Diff-Control for real-world tasks: The top two rows depict the language-conditioned kitchen task, where the Diff-Control Policy successfully
generates actions in alignment with the given language command and consistently executes these actions. The third row shows a successful duck scooping
experiment. The last row displays one drum task result. The results are best appreciated with videos on the website: https://diff-control.
github.io/.

serves as the linguistic input for the robot’s understanding
and decision-making processes. Table I further arranges the
tasks in ascending order of subjective difficulty, providing
a summary of task characteristics such as the number of
distractors (Dis), number of expert demonstrations (Dem),
number of varied actions (Act), and whether high-precision
(HiPrec) is required or not. In the following sections, we of-
fer a comprehensive overview of the experimental setups for
each task, outline the data collection procedures employed,
and the specific challenges encountered within each scenario.

Language Conditioned Kitchen task: This task is de-
signed to resemble several tasks in the kitchen scenario [35],
[36]. The robot workspace consists of a scaled-down real-
world model kitchen, as illustrated in Figure 5(a). The
kitchen environment encompasses various objects, including
pots, pans, bowls, and distractor objects resembling plush
vegetables. During the data collection process, the distractor
objects are randomly positioned. Trained experts are respon-
sible for teleoperating the robot to perform two specific
actions within the kitchen environment. The actions involve
fetching a tomato and subsequently placing it either in the
pot on the stove (A) or in the sink (B) based on the given
language instruction.

High-Precision Open Lid: The task includes lifting the
lid and subsequently placing it onto a nearby bowl, necessi-
tating precise control. Depicted in Figure 5(b), the lid handle
is relatively small, and the lid surface is reflective. To gather
data for this task, we obtain 50 expert demonstrations. For
each demonstration, we introduce random placements of 5
or more distractor objects, as well as slight shifts in the pot’s
position and rotations of the lid.

Duck Scooping: Inspired by [37], we explore the inter-

action between the policy and fluid dynamics. In this task,
we equip the robot with a ladle and the robot’s objective
is to scoop the duck out of the water. As depicted in the
bottom right of Figure 5(c), this task presents challenges
due to perturbations caused by the entry of the ladle into the
water. The flow of water affects the position of the rubber
duck, necessitating the robot to execute precise and cautious
movements in order to successfully capture the duck.

Drum Beats: This task is specifically designed for robots
to learn periodic motions, a challenging feat due to the
unique action representation required [38]. As illustrated in
Figure 5(d), the task presents difficulty as the robot must
accurately count the number of drum beats and determine
when to cease drumming. A total of 150 expert demonstra-
tions were obtained by teleoperating the robot to strike the
drum three times in each demonstration.

V. EVALUATION

The efficacy of the proposed policy is evaluated through
four experiments as described in Section IV. These exper-
iments aim to address the following questions: (a) Can the
Diff-Control policy demonstrate generalization capabilities
across diverse tasks? (b) To what extent does the Diff-Control
policy outperform the current state-of-the-art methods in
terms of overall performance? (c) What are the distinguishing
characteristics and benefits of utilizing a stateful policy
compared to a non-stateful policy?

We propose the baselines are as follows:
1) Image-BC: This baseline adopts an image-to-action

agent framework, similar to BC-Z [2], it is built
upon ResNet-18 backbone and employs FiLM [39] for
conditioning using CLIP language features.

https://diff-control.github.io/
https://diff-control.github.io/


TABLE II
RESULTS EVALUATION IN FORMS OF SUCCESS RATE (%) AND DURATION (SEC) DURING POLICY EXECUTION

Method Kitchen Lang. Kitchen Lid Duck Scoop Drum Beats
Pick & Place Duration Open Lid Duration Scoop Duration Hit × 3 Duration

Image-BC 60% 34.48±1.46 12% 35.13±0.50 16% 21.04±1.99 0% 19.50±0.79
ModAttn 28% 36.04±1.51 36% 46.42±4.69 12% 20.43±0.16 0% 25.74±0.68

BC-Z LSTM 64% 35.78±1.69 40% 46.33±7.20 36% 21.21±1.54 0% 17.53±0.31
Diffusion Policy 88% 41.23±2.12 64% 47.94±1.95 76% 21.72±2.17 24% 20.60±1.64

Diff-Control 92% 42.51±1.71 80% 46.80±1.75 84% 23.12±3.03 72% 21.46±1.97
Means±standard errors
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Fig. 7. Left shows Diff-Control successfully recovers from a human perturbation, efficiently picking up the tomato.; Right shows when visual occlusion
is applied, Diff-Control manages to scoop the duck from the water successfully. In contrast, the diffusion policy fails. Red shade implies perturbation.

2) ModAttn [32]: This method employs a transformer-
style neural network and uses a modular structure
to address each sub-aspects of the task via neural
attention, it requires a human expert correctly identifies
components and subtasks to each task.

3) BC-Z LSTM: This baseline represents a stateful policy
inspired by the BC-Z architecture. The incorporation
of a prior input is achieved by fusing the prior actions
and language conditions using MLP and LSTM layers.

4) Diffusion Policy [4]: This baseline is a standard dif-
fusion policy.

For all experiments, we present the results obtained from
the best performing configuration of each baseline method.
All the baseline models are reproduced and trained using the
collected expert demonstrations for a total of 3,000 epochs.
Throughout the training process, checkpoints are saved every
300 epochs. In our analysis, we report the best results
achieved from these saved checkpoints for each baseline
method. Each experiment was carried out on batch size of 64
on a single NVIDIA Quadro RTX 8000 GPU for roughly 24
hours. For all the tasks, we use the Adamw optimizer with
a learning rate of 1e-4.

A. Kitchen Task Evaluation

Language Conditioned: The evaluation results for the
language-conditioned kitchen task are presented in Table II.
The duration of the task is measured from the initiation of
running the policy until the robot successfully opens the grip-
per and places the tomato either in the sink or on the kitchen
stove. We tested each policy for 25 trials. In each of these
25 test trials, we randomized the distractor locations and the
pot and bowl placements. Figure 6 shows the Diff-Control
policy performing the task with two language-conditions.

Among all the baseline methods, Diff-Control achieves the
highest success rate with 92%, which is 5%, 64%, and
32% higher than diffusion policy, ModAttn, and Image-BC,
respectively. All policies are capable of reaching the correct
destination based on the language inputs. Interestingly, we
observe that Diff-Control policy exhibits the ability to
recover from perturbations as shown in Figure 7(left).
Diff-Control continues following the language commands
whereas ModAttn, and Image-BC failed to do so.

Open Lid: Similar to language-conditioned kitchen task,
we randomized the distractor locations and the pot and bowl
placements through out the test trials. Diff-Control policy is
able to achieve this high-precision task with 80% success rate
over 25 trials. The efficacy of the policy is visually illustrated
in Figure 2, presenting the diffusion steps involved. In
comparison to the baselines, the diffusion policy resulted in
a success rate of 64% and the ModAttn policy with 36%.
The Image-BC policy yielded the lowest success rate of 0%.
It was observed that even a minor offset in the lid position
presented substantial challenges for these explicit policies,
i.e, Image-BC, ModAttn, and BCZ-LSTM. In contrast, Diff-
Control policy demonstrated superior performance and does
not show the tendency to overfit on idle actions. This
characteristic enabled the gripper to maneuver and explore
varied locations for successfully gripping the lid handle.

B. Duck Scooping Evaluation
In this task, we tested if Diff-Control policy is able to

generate consistent actions in a dynamic setting. The success
rate and task duration for the given task are presented in
Table II. Task duration was recorded as the time inter-
val starting from the policy initiation until the duck was
completely removed from the water. The experiment was
conducted over 25 trials, with the duck randomly placed in
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Fig. 8. Left: Analysis of the execution gap (measured in cm) for diverse
tasks during evaluation. Right: Assessment of the success rate for each
policy when faced with perturbations in the duck scooping task.

the water for each trial. Among the state-of-the-art methods,
the Diff-Control policy achieved a commendable success rate
of 84% while performing in this dynamic task. Notably, the
Diff-Control policy demonstrated a tendency to successfully
scoop the duck out in a single attempt, reaching a low enough
position for accurate scooping. In contrast, the Image-BC and
ModAttn failed often as the robot struggled to lower the ladle
enough to reach the duck. Diff-Control shows robustness
against visual perturbation such as occlusion. In Figure 7
(right), when the view is blocked, the diffusion policy fails
immediately. However, Diff-Control can successfully scoop
the duck without relying on any visual information because
it learns an internal action transition to maintain a stateful
behavior.

Robustness Evaluation: Further evaluation was con-
ducted to assess the consistency of the Diff-Control policy
in this task. One way of quantifying action consistency is to
measure the execution gap, which is the distance between
the tail and head of two consecutive execution windows.
In Figure 8(left), the 3D distance of the execution gap
is illustrated for each policy network, with Diff-Control
displaying the smallest gap. Furthermore, a supplementary
set of experiments was carried out for the duck scooping
task under visual occlusion. As depicted in Figure 8, Image-
BC and ModAttn only achieved a 0% success rate when
faced with perturbation, while BC-Z LSTM succeeded in 1
out of 10 trials in this scenario. Despite the diffusion policy
achieving a 50% success rate, Diff-Control demonstrated an
80% success rate, showcasing the benefits of its stateful
characteristic.

C. Drum Beat Evaluation

Each policy network was assessed in this experiment to
evaluate the impact of statefulness versus non-statefulness
on robots learning periodic motions. During testing, success
was specifically defined as the robot hitting the drum exactly
three times and then stopping. The results are presented
in Table II, with Diff-Control achieving the highest success
rate of 72%. This success rate surpasses the diffusion policy
by 48%. The majority of the baseline methods exhibit poor
performance (Image-BC, ModAttn, BC-Z LSTM with 0%
success rate) due to their inability to accurately predict the
direction of actions, such as the end-effector moving upward
instead of downward, and the lack of appropriate halting
actions. Consequently, The robot is unable to keep track
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Fig. 9. Generated action with variance from Diff-Control and Diffusion
Policy during inference time.

of the number of times it strikes the drum and continues
to strike the drum non-stop. While the BC-Z LSTM can
accurately count the number of hits, it encounters difficulties
in generating reliable actions initially. We visualize one test
trial in the last row of Figure 6, where the last plot shows
robot stopped after hitting the drum for 3 times. Furthermore,
we compared Diff-Control and the diffusion policy during
the inference period, as shown in Figure 9. We sampled
10 action trajectories from each policy. Interestingly, the
diffusion policy, without any prior actions, produced two
distributions along the z-axis. This suggests that the policy
struggled to determine whether it should descend to strike
the drum or ascend after hitting the drum. In contrast, Diff-
Control successfully generated actions by striking the drum.
This observation shows using Diff-Control as a stateful
policy is beneficial for robot learning periodic behaviors.

VI. CONCLUSION

This study introduces Diff-Control, a stateful action dif-
fusion policy designed for consistent action generation.
The study explores the integration of diffusion model with
ControlNet for robot action generation, demonstrating how
temporal consistency can be enforced to enhance robustness
and success rates. The efficacy of the proposed policy
network is validated across four diverse real-world tasks,
each highlighting a unique characteristic of the Diff-Control
policy. Furthermore, our findings underscore the robustness
and effectiveness of Diff-Control in managing dynamic and
stateful tasks while remaining resilient against perturbations.

Limitation: The key limitations that require future con-
sideration are as follows: 1) Diff-Control relies on the as-
sumption that expert demonstrations are optimal, potentially
leading to convergence at suboptimal states with insufficient
demonstrations; 2) Diff-Control involves fine-tuning on a
base policy to acquire action representations, necessitating a
two-stage training process. Future work can explore automat-
ing the two-stage training process and manipulating different
input conditions to ControlNet for other applications, i.e.,
torque sensors for contact-rich manipulation.
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